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There is a whole series of processes in which the principal role
is played by the kinetics of heat and mass transfer between some poly-
disperse system of particles and the surrounding medium. These pro-~
cesses include, for example, the burning of fuel in pulverized or liquid-
droplet form in a gaseous medium, heterogeneous chemical reactions,
proceeding in different phases and accompanied by diffusion and heat
flows to the particles, various processes of heat and mass transfer in
fluidized beds, extraction processes, the evapaoration of droplet or
particulate aerosols, the dissolving of solid particles, processes of oil
degasification, and so on. In describing the kinetics of such processes
it is usual to employ resulis obtained from an examination of the bound-
ary value problem for the equations of diffusion and heat conduction in
the neighborhood of an individual particle. However, as a rule, the
heat and mass transfer rates for a multi-particle medium depend, apart
from the characteristics of each particle, on the state of the medium
in which the particles are located. Since the state of the medium, in
turn, depends on the kinetics of the processes at each particle, the
problem of heat and mass transfer of the particle system becomes non-
linear, even if the corresponding problem for a single particle is lin-
ear. For example, the rate of burning of an aerosol depends on the
composition of the gas, which varies with time [1, 2], the chemical
reactions are determined by the concentration pf reactants and reac-
tion products in the medium, which also depend on the history of the
process, and so on. All this leads to serious difficulties in computing
various quantities of practical importance (e.g., the amount of fuel
consumed or reaction product formed). The problem becomes even
more complicated if the system of particles participating in a heter-
ogeneous process is polydisperse, and interest attaches to certain more
detailed characteristics of the system such as: the mean diameter and
distribution function of the particles, the variation of this function with
time, etc. Moreover, in [3]it was shown in relation to a particular
example that it is impossible to interpret a real process involving a
polydisperse system of particles with the help of certain relations for
a monodisperse systemn, even in cases where only the integral charac-
teristics of the process are of interest.

In this paper attention is concentrated primarily on the question
of making an accurate allowance for the polydispersity, and secondly,
on the elimination of the difficulties associated with the above-men-
tioned nonlinearity. Therefore we shall consider one of the simplest
problems of this kind, namely, the evaporation of a system of droplets
in a turbulent gaseous medium, when the investigation of the evapora-
tion kinetics of a single droplet in an infinite gas can be reduced to
the solution of a single equation of parabolic type in a space with an
excluded sphere. This problem is also of considerable independent in-
terest: among its possible applications it is sufficient to mention the
physics of clouds and the evaporation of various artificial fogs, created
in the chemical industry and in laboratory practice.

The problem of evaporation of 2 polydisperse system of droplets
was previously solved in [3]. A certain generalization of the equation
obtained in that paper is presented in the first section of this article,
We note that the formulation of the problem adopted here is very sim-
ilar to that of [3].

§1. Formulation of the problem. We shall assume
that the concentration of the vapor and the temperature
are roughly the same at all points in space. Strictly
speaking, this assertion is valid only for droplets in
a sufficiently turbulent medium; it is also usually as-
sumed to hold in the case of a cloud, etc. Moreover,

for simplicity we shall assume that the temperature

is such that the concentration of saturated vapor is
much less than the density of the medium (this assump-
tion is valid, as a rule, in real conditions). This en-
ables us, firstly, to neglect local variations of tem-
perature at the surface of the droplets, assuming that
only the average temperature of the system as a whole
varies, and secondly, to disregard Stefan flow and the
resulting variation in the rate of evaporation of indi-
vidual droplets. We also neglect the possible coagu-
lation of droplets and assume that their characteristic
dimensions are such that it is possible to disregard
the dependence of the saturated vapor pressure on
droplet radius., These assumptions impose definite
limitations on the dimensions of the droplets of the
system, which can be described with the aid of the
relations obtained helow.

Since, by assumption, the temperature is remote
from boiling point, it is also possible fo neglect the
effects, considered in {4], of a decrease in droplet
radius in the process of evaporation, and for the ra-
diug r of the individual droplet to write the Maxwellian
expression

dr D

T =LPuwy—co.
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Here D is the coefficient of diffusion of vapor in the
medium, p is the density of the liquid, g*(t) is the
density of the saturating vapor at a given temperature
T(t), and g(t) is the density of the vapor.

As in [3], we describe the polydispersity of the
system with the help of the spectral function

Cdn(r) =nej (r, 1) dr,
o (1.2)
1,0 =f0 () for)dr =1,
0

Here ny is the number of droplets per unit volume
at the initial moment. The change of f(r, t) with time
formally corresponds to the flow of a certain ficti-
tious liquid with density f(r, t), for which the con-
tinuity equation holds. Thus, we get following analog
of the kinetic equation in the region r > 0:
ot e ety G ) m e

The solution of this equation has the form

Fry=r (P00 " fo [(r® +0(2) 1,
(1.4)
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8(¢) = [g* (D) —q(v)] dv.
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The problem can be considered solved if it is pos-
sible to find the function 6(t). We shall use the method
of [3]. From the condition of constant total content of
evaporating substance per unit volume we have

¢ ridr

4 "
g(8) = g0 + 5-1Pm0 [ <re®> — E, fol(r® +9),/]FW' (1.5)

Here it is assumed that the volume occupied by the
droplets is relatively small; here and henceforth the
subscript zero relates to the initial moment, and the
symbol () denotes averaging over the distribution
fo(r). In accordance with the definition of 6(t), from
(1.4) we have

gt) = 4" O—55 5 - (1.6)

The quantity g*(t) may be assumed to be a function
of the mean temperature T{t). However, from the heat
balance equation it follows that

T(t) —Tom=— (g (t) — o) -

c

Here L is the specific heat of evaporation, c is the
specific heat per unit volume of the two-phase system
at constant pressure. Thus, g*(t) is a function of q(t).
Eliminating here and from (1.6) the function g*(t), we
obtain a functional relation between q(t) and the deriva-
tivedg/dt. Substituting in (1.5), we obtain for 6(t) the
analog of the equation of [3] with allowance for the var-
iation of temperature during evaporation. For the ma-
jority of real systems this equation can be simplified
by assuming that the reduction in temperature due to

evaporation is not large, so that g*(t) can be represent-

ed in the form of the first few terms of a Taylor ex-
pansion with respect to the difference q{t) — ¢,. Then
q(t) is a linear function of d9/dt, We have

40 1+ bLgo/ cgo*
g () =age" —B 57, : 1+510,/qu’
1.7)
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The quantity b is the coefficient in the expansion
of g*(T) with respect to the difference T(t) -~ T, as-
sociated with the first power of thig difference. In-
stead of (1.5), after substitution of the variable of
integration it is easy to obtain

dé age* —
'd_[': q0 3 9o +

{1.8)
+ o e [VS (0" —8.(8) "o (0) dp — <re®> .
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The solution of this equation is difficult even for the simplest
forms of the initial spectral function fy(r). However, asin [3], for
g it is easy to obtain approximate formulas corresponding to large
and small initial unsaturations, asymptotic formulas for large t, etc.
An exception is the evaporation of a monodisperse system of drop-
lets, when the solution of (1.8} is obtained without difficulty. In fact,
in this case fy(r) = &(r —~ 1), and after a series of rransformations we
get for 8(1) the algebraic equation (6(t) < )

Te
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If at a certain moment t, the quantity 6(ty) is compared with 1,
(this is possible only if A > 0), then at this moment the system of
droplets disappears, and att > ty we have

fir,t) =0, g () = g0 -+ Y3 nprgrd,

T () = Ty — 43 nongrgLe.

If A <0, then, as may easily be seen, ast —+w equilibrium is
attained between the droplets and the medium, the asymptotic radius
of the droplets being easily computed from (1.8) with d8/dt = 0; we
have

Foy, = rq — {1 — [re® — (%5 tong)™ (g™ — qo)[7s}s.

Hence and from the balance equations it is possible to express
Geos Too also. The results can be extended to the case when the sys-
tem consists of several monodisperse fractions; however, in more
general cases Eq. (1.8) gives practically nothing. Therefore it is of
interest to investigate the kinetic equation (1. 3) from other viewpoints.

§2. Self-similar systems. It is known that in a
number of cases, when the fluctuations of the exter-
nal conditions are small, the spectrum cf the system
of droplets at any moment of time is characterized
by constant quantities—the mean radius, the volume
of the droplets, etc. remain unchanged; only the num-
ber of droplets per unit volume n{f) changes, i.e.,
the system is self-gimilar. It is natural to seek a
solution f(r, t) of Eq. (1.3) for such a system in the
form of the product @ (t)R(r). Substituting thisin (1.3),
we obtain

B Lo —a ) () =0.@.1)

Setting dR/dr — R/r = —2srR, where s is a con-

stant, we have
R (1) = 2sr exp (— s7%) . 2.2)

The problem for @ {t) has the form

42 ) —g@)©=0, DO)=1. @.3)

Condition (1.2), with 2.3), gives R{r} = f3{x},

which determines the constant s in (2.2). From (1.6}
and (1.7) we have

" (1) — g (1) = shy (400" —q (1)) -
Hence and from (1.5) we get

ro®y = Vs,

4
b= %npno <r03> N

2Dp7s (g% (8) —q (1)) = a + bD (2),
a= —SB— (d‘qls* —qo— % mpng <"08>.>1
Thus, Eq. (2.3) is written in the form

dD /dt + a® + bD = 0.
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This is the ordinary Bernoulli; its solution for
®(0) =1 is

@) =11 +b/a)e ~b/al. 2.4)

We shall consider some special cases. 1. Let @ > 0 be the inirial
"water content” less than the initial unsaturation; at ¢ > a¢”! we have
D (1) == ae-ot (a4~ b)™1. 2. At a = 0 we get the special case when the
system evaporates entirely, the equality q(t) = q*(t) being satisfied as
t — o, The quantity ®(t) decreases to zero in accordance with the
law® () = (1 4+ bt)2. 3. If a <0, a + 5> 0 the initial "warter con-
tent" is greater than the initial unsaturation; the system does not
evaporate completely, The limiting value of &(t) as t = « is equal 1o
faf/b. If a + b =0, ¢ (1) = ¢* (1) = gy, i.e., the system does
not change at all, When a + b < 0 we have q(t) > q*(t), which corre-
sponds to condensation growth of the droplets in the supersaturated
medium. However, since, when condensation is considered, Eq.
(1.3), written in the region r > 0, becomes unsuitable (it must be
supplemented on the right by a term allowing for the appearance of
new droplets in the system), the results corresponding to the latter
case have little physical significance.

All the other guantities characterizing the system
may be expressed in terms of ®(t):

n () = n,® (1), gt =g+ (1 -~ D),
T =Ty — Ly (1 —O@), vo="ampre<rs®>.

Here v, is the initial "water content." The specific
heat c is expressed in the form of a sum

€ == Co¥Yo -+ €19, + €49, = const..

The terms of the sum correspond to liquid vapor and
gas; 7v; are the contents of these substances by weight
per unit volume, c; are their specific heats. A sim-
ple analysis shows that the maximum reduction of tem-
perature occurs when vy, = ozq(’,". In this case

lim (T, — T (1)) = aLe-lg,*
depends very strongly on the absolute initial tempera—
ture.

The relations obtained have comparatively simple
form. From the purely practical viewpoint it is guite
unnecessary, of course, for the true spectral function
to belong to the one-parameter family (2.2). It is per-
fectly sufficient to extrapolate it from one of the func-
tions of this family, with a certain error permitted by
the conditions of the specific problem. If such extrap-
olation is possible, the relations described will char-
acterize the behavior of the system with sufficient ac-
curacy.

The spectral function of self-similar systems are a sort of eigen-
functions of the nonlinear problem considered. In view of the nonlin-
earity the direct application of the Fourier method to the solution of
the problem for systems with functions fy(r) not belonging to (2.2) is
impossible. However, it is possible to generalize the method some-
what by reducing the problem to the solution of a certain system of
ordinary differential equations. Let

N
folry =2 3} sp0.r exp (—s,r%),

n==1 n=1

Functions of type (2.5) can be used directly, for example, to
describe various natural and artificial systems in whose spectrum for
various reasons there is more than one maximum. We shall find f(r,
t) in the form

N
Hr, t) =2r ) 50,0 {t) oxp (—5,7%) . (2.8)

n=1
Substituting this expression in (1.3), we obtain, as before, the
system

4,

n

2D
Tt T @ O—a 0, =0  ©.©O=1. @7

Hence, in particular, we immediately obtain the relations

8,

8
m n
0, " =0,".

sp In @, =5, In ©,,,

Assuming that sy > sy, if m > n, we derive the important quali-
tative conclusion that with the passage of time the more distant max-
ima of the spectral function (corresponding to large r) are smoothed
out more rapidly than the nearer ones, i.e., the moments (r") de-
crease with increase in t (and do not increase, notwithstanding the
assertions of [3]). It is also clear that to solve the problem it is suffi-
cient to find only one of the functions &,(t)~to be definite we shall
find ®y(t), corresponding to the smallest s from (2.7),

N
d@.
b_dTl —_ ®1 (al + 2 bl(ﬂ)mlsn/sl)v'

n=1

(2.8)

The constants a, and by(R) are easily computed in the same way
as a and b,

N »
5y _ n n *pnosy Cn
n=73 (aqo* — go—nrpng ) ;—-/,), o u" =

n=1"n n

For arbitrary c; and sy this equation can be integrated only nu-
merically. In the special case when s = kys;, where ky are integers,
the right side of (2.8) is a polynomial, which can always be expanded
in factors, and Eq, (2.8) integrated. The solution is then expressed in
the form of a transcendental relation between € and t. In this case,
obviously, the root is taken equal to unity at t = 0. For example, in
the case s; = 283, sy = 0 when n > 2 we get

o a0, e om

Bt Fn YO Tl tw
_2Viq _[ae—ment ALY
T = 1—¢ °* 7= ﬂl/zpﬂo(i——ﬂl) 1—¢ .

Here it has been assumed that by(%) = 0. Depending on the sign of
the determinant

A =41y — 1

we get different laws of variation of ®(t), describing the evaporation
under different possible initial conditions.

§3. Extension to systems with an arbitrary initial
spectral function. The results of the preceding section
suggest the idea of finding f(r, t) for arbitrary f(r) in
the form of an integral transform of some function
& (s, t) with a kernel belonging to the family (2.2).

Let

1, 1) =rg A(s)e " @ (s, t)ds .

0

3.1
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Imposing on $(s, t) condition & (s,
in particular,

0) =1, we get,

for)=r{ A emds.

Or, introducing the new argument o = r?

r @.2)

o@) =\ 4@ewds, o) =D0]
3 =Vs
The representation of (3.2) immediately enables
us to answer the question for what ¢(o) it is possible.
Thus, the only limitation imposed on the type of func-
tion ¢ (o) consists in the requirement that ¢ (o) be a
Laplace transform of some other function A(s), i.e.,
have an inverse transform. The condition of existence
of an inverse transform is well known; therefore,
henceforth, the question of the degree of generality
will not be considered. Consequently, the function A(s)
may be assumed known. By analogy with the previous
argument, it is appropriate to represent the kernel in
the form ®(s, t) = ®5(t), i.e., to write instead of (3.1)

) =r S A(s)e™ D0 () ds 3.3)

After transformations for & (t) we get the equation

oo o
do 4 s 2
o= (a0 dsS A(s) U —O° (O] riemrdr) =
ol e (3.4)
(ao + 4npn° S ds S A(s) D° (t) rte=r dr)
0 Q
Here
b= dqo*F; . 4:'Epno (ré®y = (0’-90* —go—"o).

Integrating with respect to r in (3.4), we finally
obtain

L= — (e 4+ f’”"S SO () A(9)ds). (3.5)
6

The chief advantage of Eq. (3.5) as compared with
(1. 8) consists in the fact that in the integral in (3.5)
the limits of integration do not depend on the unknown
function, and the integrand itself is, as a rule, sim-
pler than in (1.8). Even if (3.5) is difficult to solve in
finite form, its solution can always be obtained nu-
merically. For real forms of f(r) the analogous pro-
cess may prove inapplicable to (1.8).

As an example, while bearing in mind possible applications to the
physics of clouds, we shall consider the case when the initial spectral
function is given by the known Khrgian-Mazin formula [5]}

fo () = Pa®peTe,
The corresponding function ¢(o) has the form

9 (0) = 20° Vo exp (— o V0. (3.6)

Hence we have the following function:

@3 w?
A@Er=5 7w m‘exp( o ) {(3.7)
Substituting (3. 7) and (3. 3) and integrating for &(t) = 1, we get
f (r, 0) = 26®%re™, a5 in fact we should. Moreover,

, o0
nz 2 S D4 (s)ds =
°

oo
2 a
Tpsoty S (0 —2s) exp[ In®— 4S] S =
0

~ B oo a )] -

==
A

v 2l dx
) +221n m]‘;{

3
. . %
=kexp[—o(—n 0" 3 4, (— o)™, k=’_‘_%gﬂ.(3.8)

n=0 |

Here d; are constants which may easily be expressed in terms of
the parameters of the problem, if we use the identity

o

v dx 1/ x\h 1
S exp (-— = ——Mr“);r =5 (T) exp [— 2 ()"
]
Substituting (3.8) in (3.5), we obtain for the function ¥ = —In &

‘”’ =ap+kexp(—o V) 2 4w, (3.9)

N=0

The solution of this equation is always expressed in quadratures.
In many cases it is important to know the behavior of &(t) at small
and large times t, at different values of the unsaturation, etc. The
corresponding formulas are obtained from (3.9) without difficulty.
For example, at small &(t) (complete or almost complete evapora-
tion)

@ (t) =~ Ce™ when ¥ ()>1.

ai =,

For evaporation close to saturation (@ () <1, ¥ (1) = 0)

av -
30 = Go+ kdo + (d — wdo) & VY.

The problem may be treated in exactly the same way for other
types of spectral functions.

So far it has been assumed that the rate of change of the droplet
radius can be expressed with the help of (1.1). This expression corre-
sponds to the assumption that the diffusion of vapor from the droplets
can be described on the basis of the Maxwell-Langmuir theory, in
which the convective diffusion is not considered at all. The use of
(1, 1) is justified if the turbulent pulsation scales are much greater
than the particle dimensions, and the rate of fall of the particles in
the medium does not significantly affect the diffusion flux.

§4, Effect of turbulence on mass transfer kineties,
In the general case of developed small-scale turbu-
lence expression (1.1} is incorrect. It may be re-
placed by the relation [6]

D
=222 —q* ®). (4.1)
Here ¢ is a coefficient depending on the shape of
the particles (for spheres £ = 1), and é is the mean
thickness of the diffusion boundary layer.

The turbulence of the medium may be caused either by external
(mixing) or internal (motion of particles relative fo medium) factors.
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If the turbulence is due to external causes, then the characteristic
Reynolds number R is determined by the flow parameters as a whole
and in the first approximation does not depend on the dimensions of
the droplets, etc, On the other hand, an effective contribution to the
convective transfer of vapor molecules from the droplets is made only
by pulsations whose scale is less than or close to r in order of magni-
tude, i.e., the Peclet number P, characterizing the relative role of
convective motion and molecular diffusion in mass transfer, can be
written in the form P = vi/D, where v is the characteristic velocity of
the turbulent pulsations.

The thickness 6 of the diffusion layer can be ap-
proximated [6] by a power function of the Schmidt num-
ber S=R/P, i.e., instead of (1,1) we get

dr/dt =m(q@® — ¢* @r>. 4.2)

Here n is a certain parameter depending on D, and
" is a constant lying in the interval (0,1). The case
% =1 corresponds, obviously, to evaporation in the
undisturbed medium, as required by the Maxwell-
Langmuir theory, and the case of n = 0 to highly de-
veloped turbulence, when the vapor transfer is pro-
portional to the surface of the droplet.

As before, we get self-similar spectral functions,
which in the given case have the form

fo(r) = 2sr*exp (—— T?—:—;‘r“ ") .

4.3)

The results of the preceding section, as may eas-
ily be seen, are wholly applicable to the case consid-
ered if we define the new argument by means of the
relation

0 = 2r*t (4 L)L,

Furthermore, we shall consider the influence of
free fall of the droplets in the medium, assuming for
simplicity that for mass transfer of stationary indi-
vidual droplets the Maxwellian relation (1.1) is valid.
The quantity dr/dt is satisfactorily deseribed by the

known Fressling formula

F=m@o—gmt+o2r(L)"R*]. .4

Taking into congideration that in the given case R =
=wr/u (u is the viscogity of the medium), and that the
rate of free fall w is proportional to the radius r, for
the self-similar spectral functions we obtain

fo () = Cr (r + k12 e-rlk,

, 4.5
= 0.27 (u | DYS(R [ 17 . (*.5)

We note the two following obvious ways of generalizing the re-
sults of this paper. Firstly, the proposed method can be extended to
the case when the transfer kinetics depend not on one, but on many
processes of the diffusion type. Secondly, it is possible to extend the
method to heterogeneous systems with more than two phases (or com-~
ponents). For example, the method is directly applicable to the anal-
ysis of processes in a three -phase water~air system, which is of special
interest in connection with the physics of clouds.
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